Ruiyang Zhang

17307130064@fudan.edu.cn | 🖓 Ruiyang-061X | 🌐 ruiyang-061x.github.io

Research Interests

My research interests mainly lie in **computer vision** and related topics. I'm now focusing on **open**vocabulary 3D object detection and its application in the autonomous driving scenario. I also have a background in **3D object understanding** and **vision-language model**.

EDUCATION

Fudan University Bachelor's Degree in Computer Science and Technology

WORK EXPERIENCE

Backend Development Engineer, Meituan, Shanghai

Selected Awards

Second Prize, China Undergraduate Mathematical Contest in Modeling (CUMCM), 2019 Third Class Scholarship for Outstanding Students, Fudan University, 2018 & 2019 First Prize, Chinese Mathematical Olympiad in Jiangsu Province (CMO), 2016 First Prize, National Olympiad in Informatics in Jiangsu Province (NOIP), 2014 & 2015

Research Experience

Open-vocabulary 3D Object Detection

- Supervisor: Dr. Hu Zhang, The University of Queensland and Prof. Zhedong Zheng, University of Macau
- Detect 3D objects from point clouds and images without human-annotated 3D labels.
- Generate pseudo labels for large objects and small objects from point clouds and images respectively. Train a class-agnostic 3D object detector in a self-training manner based on those pseudo labels.
- Use 2D open-vocabulary detector such as GroundingDINO to detect 2D objects from images and classify 3D objects by matching them with their 2D counterparts.

Fine-grained 3D Object Understanding

- Supervisor: Runsen Xu, MMLab, CUHK
- Developed a dataset called ShapeNetPartTriplet based on ShapeNetPart, comprising part-level triplets of point cloud, image and text.
- Conducted contrastive learning between point cloud and image, as well as point cloud and text, to enhance the part-level understanding of objects of the 3D encoder.
- Performed part segmentation experiments to validate the model's capabilities.

Video Instance Segmentation

- Supervisor: Prof. Wengiang Zhang, Fudan University
- Developed a DNN which encodes the video into a spatio-temporal feature pyramid.
- Implemented channel attention and spatio-temporal attention mechanisms to enhance performance.
- Demonstrated superior results on the Youtube-VIS dataset compared to previous approaches.

Shanghai, China Sept. 2017 - Jun. 2021

Jul. 2021 - Jun. 2023

Aug. 2023 - Nov. 2023

Mar. 2021 - Jun. 2021

Nov. 2023 - Present

– Supervisor: Prof. Junping Zhang, Fudan University

- Designed an advanced deep learning model based on DenseNet with CBAM(Convlution Block Attention Module).
- Enabled accurate classification of chest X-rays into Covid, No-Covid, and Normal categories.
- Developed a heatmap visualization to identify disease areas in X-ray images.

Speech Recognition

– Supervisor: Prof. Xiangyang Xue, Fudan University

- Collect and annotate a speech dataset of 20 Chinese words.
- Utilized FFT(Fast Fourier Transform) for feature extraction and trained a CNN for robust speech classification.
- Achieved an impressive recognition accuracy of 91.3% through rigorous experimentation.

WORK PROJECTS

Zebra System

- Spearheaded the development of a comprehensive marketing supply activity system.
- Implemented key features such as supply activity configuration, operation authority management, and supply data retrieval.
- Utilized a technology stack including Spring Boot, Pigeon, Thrift, MySQL, Redis, Kafka, Crane, Caffeine, and Lion.

Rainbow System

- Played a key role in supporting the daily iterations of the system.
- Developed supply list components and incorporated exposure labels for improved functionality.
- Designed and implemented an Elasticsearch index for efficient supply retrieval.
- Technology stack: Spring Boot, Pigeon, MySQL, Redis, Kafka, Crane, Lion, Elasticsearch.

Skills

Programming: Python (Pytorch), C/C++, MATLAB, Java **Language**: English (IELTS 7.0/9.0), Chinese (Native)

COVID-19 Detection

Mar. 2020 - Jun. 2020

Mar. 2019 - Jun. 2019

Mar. 2022 - Mar. 2023

Jul. 2021 - Feb. 2022