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Abstract

Given the higher information load processed by large
vision-language models (LVLMs) compared to single-
modal LLMs, detecting LVLM hallucinations requires more
human and time expense, and thus rise a wider safety con-
cerns. In this paper, we introduce VL-Uncertainty, the first
uncertainty-based framework for detecting hallucinations
in LVLMs. Different from most existing methods that re-
quire ground-truth or pseudo annotations, VL-Uncertainty
utilizes uncertainty as an intrinsic metric. We measure un-
certainty by analyzing the prediction variance across se-
mantically equivalent but perturbed prompts, including vi-
sual and textual data. When LVLMs are highly confident,
they provide consistent responses to semantically equiva-
lent queries. However, when uncertain, the responses of the
target LVLM become more random. Considering seman-
tically similar answers with different wordings, we cluster
LVLM responses based on their semantic content and then
calculate the cluster distribution entropy as the uncertainty
measure to detect hallucination. Our extensive experiments
on 10 LVLMs across four benchmarks, covering both free-
form and multi-choice tasks, show that VL-Uncertainty sig-
nificantly outperforms strong baseline methods in halluci-
nation detection.

1. Introduction

Large vision-language models (LVLMs), capable of per-
ceiving the world through diverse modalities, e.g., text,
and images, have been widely applied in fields, e.g., medi-
cal diagnosis [15, 25, 38], embodied robotic [17, 26, 39],
and autonomous driving [8, 45, 50]. Despite their im-
pressive performance, similar to large language models
(LLMs) [18, 18], LVLMs inevitably generate hallucination
with over confidence, if any, posing serious risks in safety-
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Figure 1. Our motivation. External evaluator-based methods usu-
ally suffer from knowledge missing when it comes to new do-
mains (see (a)). In contrast, our VL-Uncertainty elicits intrinsic
uncertainty of LVLM through proposed semantic-equivalent per-
turbation. Finally, refined uncertainty estimation facilitates reli-
able LVLM hallucination detection (see (b)).

critical scenarios [2, 31]. Compared to single-modal LLMs,
detecting hallucination in LVLMs demands a deep under-
standing of multiple modalities [41]. It not only poses the
challenges of the question understanding, but also the dif-
ficulty in checking the answer authenticity. Therefore, re-
searchers have resorted to the automatic hallucination de-
tection.

Most existing works for LVLM hallucination detection
are based on external knowledge sources [28, 44, 54]. These
methods can be coarsely divided into two families. One
line of approaches [19, 49] utilizes manually annotated
ground truth, such as parsed real-world facts from knowl-
edge databases [44], to verify whether the responses of
LVLMs are hallucinatory. Another line of methods re-
lies on the pseudo annotations from extra models [28, 47].
For instance, some works introduce a ‘teacher-student’
paradigm [54]. The teacher LVLM takes the original ques-
tion and the student answer as input and then scores the
student answer. The student answers rating with low scores
indicate hallucinations. In real-world scenarios, we, how-
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ever, usually meet brand new problems, such as the impact
of breaking news. We could apply the LVLM to give a pre-
diction, but we do not know the probability of the halluci-
nation. Both hallucination detection methods tend to fail,
since we do not have the ground-truth reference, but we
also can not rely on the out-of-the-date teacher LVLMs (see
Fig. 1).

In an attempt to address this challenge, we propose VL-
Uncertainty, the first uncertainty-based framework tailored
for LVLM hallucination detection. Distinct from prior ap-
proaches that necessitate auxiliary information, our method
intrinsically quantifies the uncertainty inherent to LVLM
answers, enabling a mechanism for autonomous validation.
Upon identifying elevated levels of uncertainty within an
LVLM response, VL-Uncertainty categorizes the response
as potentially hallucinatory. Specifically, we implement
a technique involving semantic-equivalent perturbations to
the prompts, thereby evaluating the uncertainty via the dis-
persion observed in the resulting answers. The founda-
tional premise guiding this approach is that, under con-
ditions of high confidence, LVLMs exhibit a tendency to
generate consistent responses to queries that are seman-
tically equivalent. Conversely, if perturbations that alter
prompt exterior presentation lead to a divergence with re-
sponses of model, high uncertainty or potential hallucina-
tion is indicated (see Fig. 2). In particular, we employ
blurring as the semantic-inequivalent perturbation for visual
prompts. Blurring maintains all elements of the original
visual prompt and preserves underlying logic and mean-
ing. This choice follows biological principles observed in
the human visual system [3, 13] and simulates the effect
of varying distances between visual signals and the retina.
For textual prompts, we deploy an off-the-shelf LLM to
perturb the question without altering its meaning. By ad-
justing the temperature of the LLM, we control the degree
of perturbation, analogous to visual blurring. These visual
and textual prompts, paired by their levels of perturbation,
are then fed into the LVLM to obtain a series of answers.
Considering multiple LVLM answers with different word-
ing, we first cluster the predicted answers by their semantics
and calculate the entropy of the cluster distribution to quan-
tify LVLM uncertainty as a continuous scalar. The uncer-
tainty yielded by the series of answers enables the identifi-
cation of varying levels of hallucination without extra mod-
els or manual annotations. We conduct experiments with
10 LVLMs across 4 benchmarks, encompassing both free-
form and multi-choice formats. Our results show that VL-
Uncertainty consistently surpasses strong baselines by clear
margin in LVLM hallucination detection. Further qualita-
tive analysis validates the superiority of VL-Uncertainty in
effectively capturing LVLM uncertainty, thereby facilitating
accurate hallucination detection. In summary, our contribu-
tions are as follows:
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Figure 2. Comparison between semantic-equivalent perturba-
tions and inequivalent ones. LVLMs inevitably generate hallu-
cinatory answers (see (a)). While semantic-inequivalent perturba-
tions yield correct answers, they do not provide insight into the
uncertainty of LVLM for the original query, as shown in (b). In
contrast, responses to semantically equivalent perturbed prompts,
though potentially incorrect, offer valuable insight into the intrin-
sic uncertainty of LVLM. With only the exterior presentations of
prompt altered, fluctuation of answers indicates elevated uncer-
tainty (see (c)). This distinction highlights the utility of semantic-
equivalent perturbations in assessing the reliability and consis-
tency of LVLM responses.

* We propose a new uncertainty-based framework, VL-
Uncertainty, for detecting hallucination in Multi-modal
Large Language Models (LVLMs). We find that it
is of importance to control the difficulty of prompts
via semantic-equivalent perturbation, facilitating VL-
Uncertainty capturing the randomness in LVLM re-
sponse, indicating uncertainty and potential hallucination.
Since it is an intrinsic metric, VL-Uncertainty could be
easily scalable to new fields.

* We conduct extensive experiments on 10 LVLMs across
4 benchmarks, including both free-form and multi-choice
tasks. Our results show that VL-Uncertainty outper-
forms strong baselines in LVLM hallucination detection,
thereby enhancing the safety and reliability of LVLM ap-
plications.

2. Related Work

Large Vision-Language Models. Early works primarily
focus on generating text responses based on image and text
prompts [29, 30, 64]. Building on these foundational ef-
forts, subsequent studies have significantly extended the ca-
pabilities and application domains of LVLMs [17, 53, 58].
Recent research has focused on refining prompt granularity
from image-level to more detailed box- or point-level con-
trol [5, 58]. Based on these achievements, LVLMs have
been applied in different fields, such as medical diagno-
sis [25, 38], embodied robotics [17, 39], and autonomous
driving [8, 50]. While these developments enhance LVLM
capabilities, complex cross-modal interactions are intro-
duced, compromising response reliability. In high-stakes
applications, unreliable LVLM responses present signifi-
cant safety risks, leading to high demands for accurate



hallucination detection [15]. Distinct from existing ap-
proaches, we propose explicitly estimating intrinsic uncer-
tainty of LVLM to facilitate hallucination detection, laying
the foundation for safer human-LVLM interactions.

Uncertainty Learning. Uncertainty learning methods [12,
14] generally fall into three primary categories. (1) Single
deterministic methods [35, 42, 62] modify a deterministic
network to directly regress uncertainty. While these meth-
ods are straightforward and require minimal overhead, the
predicted uncertainty, if no any regularization, has a poten-
tial to overfit all uncertain or very certain, compromising
the training. (2) Bayesian methods [4, 10, 20, 51, 63] de-
ploy stochastic Bayesian networks to quantify uncertainty
by feeding the same input multiple times into one network
with dynamic weights. Some works [10, 11, 37] leverages
the dropout function, while others [6, 56] explicitly intro-
duce Gaussian noise. The variance between different pre-
dictions quantifies the uncertainty. The primary challenge
lies in modeling Bayesian networks in a computationally
efficient way. Following the spirit, test-time augmenta-
tion [21, 33, 43, 46, 61] methods apply various augmenta-
tions to the input before feeding them to one single network.
Similarly, variations in predictions due to these augmenta-
tions provide clues about uncertainty, though designing ef-
fective augmentations for meaningful uncertainty remains
challenging. (3) Ensemble methods [16, 24, 36, 52] con-
duct inference on multiple deterministic networks for the
same input, with the entropy of the ensemble group predic-
tions estimating uncertainty. However, memory and com-
putational costs increase significantly with more ensem-
ble members. Diverging from these existing methods, we
propose estimating LVLM uncertainty based on semantic-
equivalent perturbation on vision-language prompts and
variance of corresponding answer set.

LVLM Hallucination Detection. Research in this field can
be divided into two main trajectories [2, 31]. (1) External-
model-based evaluation: GAVIE [28] leverages strong
LVLM as a smart teacher to score responses of student
LVLMs, with low scores indicating hallucinations. How-
ever, reliance on external pseudo annotations limits its ap-
plication in unknown domains. More recently, HaELM [47]
specifically trains an LLM to score LVLM responses related
to hallucinations. CCEval [60] suggests utilizing GPT4 API
as intelligent parser to extract meaningful objects from re-
sponses and compare them with ground truth objects, al-
though this introduces additional cost and resource. (2) Dis-
crete rule-based checking: CHAIR [40] suggests utilizing
the discrete ratio of objects presented in the answer rela-
tive to a ground-truth object list to identify hallucinatory
responses. However, this approach is restricted to the 80
COCO object classes. Building on CHAIR, POPE [27] op-
timizes the prompting technique by focusing on Yes-or-No
questions, simplifying the checking process and improving

evaluation stability. Unfortunately, treating hallucination
detection purely as a binary classification task fails to cap-
ture the varying degrees of hallucinations. Distinct from ex-
isting works, our proposed uncertainty estimation is entirely
self-contained and free of external knowledge, thereby of-
fering greater flexibility and robustness. Moreover, we ex-
plicitly estimate uncertainty within LVLMs to continuously
indicate different levels of hallucination.

3. Method

3.1. Semantic-equivalent Perturbation

Visual Prompts. Practically, we perturb the original input
image multiple times by applying varying degrees of 2D
Gaussian blurring (see Fig. 3). By adjusting blurring radius,
we control the blur intensity from relatively clear to heavily
blurred:

Ii = ¢ViS(I7T’i)7 (1)

where I denotes the original visual prompt, r; represents
the radius of Gaussian blurring in the i-th perturbation, with
r; < r; fori < j. ¢y refers to blurring operation and
I; is the i-th perturbed visual prompt. ¢ ranges from 1 to
N and N indicates the number of perturbations. Notably,
blurring qualifies as a semantic-equivalent perturbation. It
preserves the full content and structure of the original im-
age, without introducing new objects or removing existing
ones. This method maintains spatial information and the re-
lationships between objects, given that it does not involve
transformations like flipping or rotation. Visual attributes
such as color, shape, and motion dynamics are also retained,
ensuring the integrity of original image.

Textual Prompts. For textual prompts, we also employ
semantic-equivalent perturbations by varying the wording,
grammatical structure, and narrative style without altering
the underlying meaning (see Fig. 3). To achieve this, we uti-
lize a pre-trained text-only LLM, prompting it to rephrase
the original question while preserving its semantics. Specif-
ically, we design detailed LLM instruction that focuses on
varying words, structure, and narrative, while ensuring se-
mantic equivalence. During each perturbation, we adjust
the temperature of utilized LLM to achieve varying degrees
of alteration, analogous to the visual perturbations:

111‘ = ¢text (T7 Ti) ) (2)

where¢ =1,2,..., N,and N is the number of perturbation
times. T represents the initial textual prompt, 7; denotes
the LLM temperature during the ¢-th perturbation, satisfy-
ing 7; < 7j fori < j. @ex refers to the utilized LLM and
T; is the i-th perturbed textual prompt.

Combination of Perturbed Prompts. We synchronize
the perturbations of visual and textual prompts accord-
ing to their respective degrees of perturbation. For visual



Original Prompt

Progressively Perturb

Zoo
i Wwildlife park
g @ Visual LS A BT o B 0 B Bhrnteietielieieiietietin it =
£ Perturbation = a | Shore
- - 2 s e e
I A Dessert
= = ._._._. ........................
What place & Textual What place Can you In which In which location Clustering
is pictured? m’ i in ‘ l'ocahon do.es'fhe ) do you see _fhe
P the image? this place? image depicting? image depicting?
LLM | |
Instruction: “...
—equivalen € LVLM
changing the wording, l I:I:I
structure, or narrative ...” o - e -
o dn ! [ I
Wildlife -
Zoo | A3 Shore | A/ Dessert!
park | ! Y i

Figure 3. Overall illustration of our proposed VL-Uncertainty. To facilitate mining of uncertainty arising from various modalities,
we apply semantic-equivalent perturbations (left) to both visual and textual prompts. For visual prompt, the original image is blurred to
varying degrees, mimicking human visual perception. For textual prompt, pre-trained LLM is prompted to rephrase the original question in
semantic-equivalent manner with different temperatures. Detailed instruction is designed to achieve question rephrasing with the original
semantic preserved. Prompt pairs with varying degrees of perturbation are harnessed to effectively elicit LVLM uncertainty. We cluster
LVLM answer set by semantic meaning and utilize entropy of answer cluster distribution as LVLM uncertainty (right). The estimated
uncertainty serves as a continuous indicator of different levels of LVLM hallucination.

prompts, the degree is quantified by the blurring radius,
where a larger radius indicates heavier blurring. For textual
prompts, the degree is determined by the LLM temperature,
with higher temperatures leading to more narrative varia-
tions. Each visual prompt is perturbed several times, from
low to high degrees, and similarly, textual prompts undergo
comparable degrees of perturbation. Finally, we pair visual
prompts with textual prompts that have been perturbed to a
similar extent {(I;,T;) | ¢ = 1,2,..., N}, where I; and T;
are the perturbed visual and textual prompts, respectively.

Discussion. Why is semantic-equivalent perturbation
superior to semantic-inequivalent ones? Maintaining
the original semantics of prompts during perturbation is
essential. Semantically equivalent perturbation preserves
the original meaning, ensuring that any fluctuations in
responses stem directly from the inherent uncertainty of
LVLM. This straightforward reflection of LVLM uncer-
tainty enables more effective uncertainty estimation. In
contrast, if perturbations alter prompt semantics, responses
could reasonably change, while those variations could not
reflect true uncertainty. This can misleadingly increase en-
tropy and falsely suggest high uncertainty. For example,
even if the LVLM has low uncertainty about a question, al-
tering the meaning of prompt can lead to varied responses,
incorrectly indicating high uncertainty. What is the intu-
ition behind utilizing image blurring? We select typi-
cal blurring among various image perturbation techniques,

drawing inspiration from human visual perception [3, 13].
To illustrate this design, we take the nearsighted person as
example. If their perception of an object remains stable re-
gardless of whether they wear glasses, it indicates a low
level of uncertainty about the object. Otherwise, it suggests
a higher level of uncertainty about the object. Similarly, by
applying varying degrees of blurring to visual prompts, we
can measure the intrinsic uncertainty of LVLM: stable re-
sponses across different blur levels suggest low uncertainty,
while significant changes in responses indicate higher un-
certainty. Quantitative ablations further validate our intu-
ition (see Table 2b).

3.2. Uncertainty Estimation

We quantify LVLM uncertainty by measuring the variance
within the set of generated answers (see Fig. 3). Notably, we
consider the entropy across different semantics rather than
mere lexical variations. Specifically, we use a pre-trained
LLM to evaluate mutual semantic entailment between pairs
of LVLM answers. A pair of answers is considered seman-
tically entailed only if each answer entails the other. This
operation is iteratively applied across the entire set of sam-
pled answers, grouping them by underlying meaning. We
thus obtain a set of semantic clusters {c; } ﬁV;l, where N, is
the total number of semantic clusters with N, < N. Then,
we calculate the entropy of the cluster distribution to esti-



mate uncertainty:

Nc
Uvim = — Y ple:) log p(es), 3)

i=1

where c; is the i-th semantic cluster containing answers
with same semantics, p(c;) denotes distribution probabil-
ity of ¢-th semantic cluster. Upypym represents the estimated
LVLM uncertainty.

Discussion. Why estimate uncertainty on answer vari-
ances against prompt perturbations, rather than allow-
ing LVLMs to directly regress uncertainty like previous
works [55]? We observe a severe over-confidence prob-
lem when allowing LVLMs to assign confidence scores to
their own responses. For example, even with the prompt of
hallucination, LVLM usually still regard their responses as
absolutely correct and assign a high confidence score. This
is similar to humans, i.e., individuals tend to overestimate
their confidence without repeated consideration [22, 34]. To
address this, we leverage prompt perturbations and multi-
ple sampling to better capture LVLM uncertainty. By pro-
gressively perturbing prompts and sampling multiple times,
we obtain a more refined uncertainty estimation. What
are benefits of VL-Uncertainty over vanilla semantic
entropy [9, 23]? VL-Uncertainty is tailored for vision-
language scenarios with semantically equivalent perturba-
tions for each modality. The semantically equivalent per-
turbations enable fine-grained reflection of the LVLM on
the given prompts. Additionally, the design of the image-
text pairs is with increasing perturbations. Compared with
the relatively random temperature design in [9, 23], the pro-
posed method contains different levels of difficulty in the
prompts of both modalities.

3.3. LVLM Hallucination Detection

Notably, our estimated uncertainty is continuous and pro-
ficient in indicating varying levels of hallucination, from
minor deviations to complete logical incoherence. This
continuous measure effectively captures the full spectrum
of hallucinations encountered in LVLMs. However, exist-
ing benchmarks lack such continuous, fine-grained ground
truth. To obtain quantitative results and compare with previ-
ous methods, we establish a decision threshold for our esti-
mated uncertainty: answers with uncertainty exceeding this
threshold are predicted as hallucinatory, while those below
it are considered not. Finally, we compare hallucination de-
tection predictions with the hallucination ground truth la-
bels to assess the accuracy of VL-Uncertainty in detecting
hallucinations as (Np.x + N1p) /N1, where Ny (False-
Negtive) refers to count of cases where answer is halluci-
natory and VL-Uncertainty predict the answer as halluci-
natory, Ny1p (True-Positive) refers to count of cases where
answer is non-hallucinatory and VL-Uncertainty predict the

answer as non-hallucinatory. Ny is the total number
of questions. This metric indicates the proportion of cor-
rect predictions (both hallucinatory and non-hallucinatory)
made by VL-Uncertainty across all evaluated cases.
Discussion. Can VL-Uncertainty be applied to any
LVLM in the image-text domain? VL-Uncertainty is
a versatile and scalable hallucination detection framework
that can be applied to any image-text LVLM. It leverages
both the input prompts and output answers of LVLMs to en-
able effective uncertainty estimation and hallucination de-
tection, regardless of the specific structure or design of the
LVLMs. As aresult, VL-Uncertainty offers greater flexibil-
ity and robustness.

4. Experiment

Benchmarks. Our experiments utilize both multi-choice
and free-form benchmarks. For multi-choice benchmarks,
we employ MMMU [59] and ScienceQA [32]. MMMU
presents a challenging set of college-level multi-modal
questions spanning 30 subjects with 11.5K questions. Sci-
enceQA comprises quiz questions typically found in Amer-
ican high school curricula, covering subjects like physics,
chemistry, and biology, with a total of 21,208 samples split
into training (12,726), validation (4,241), and testing set
(4,241). For free-form benchmarks, we utilize MM-Vet [57]
and LLaVA-Bench [30], which include questions and an-
swers in varied formats and lengths. MM-Vet, a recent
benchmark, evaluates integrated LVLM capabilities across
6 basic abilities and 16 combinations, with 218 free-form
question samples that span a range of topics. LLaVA-
Bench, pioneering in assessing higher-level LVLM capabil-
ities like logical reasoning, contains 60 distinct questions
categorized into ‘convention’, ‘detail’, and ‘complexity’.

LVLMs. We experiment with 10 LVLMs from 4 distinct
model groups. Specifically, we utilize LLaVA1.5 [30],
LLaVA-NeXT [29], Qwen2VL [48], and InternVL2 [7].
LLaVAL.S introduces visual instruction tuning. It aligns
a pre-trained vision encoder with an LLM through a pro-
jection layer and enables simultaneous processing of image
and text. LLaVA-NeXT scales up the baseline model with
richer data sources to enhance reasoning, video understand-
ing, and world knowledge capabilities. Qwen2VL over-
comes the limitations of predefined image resolution and
enables LVLMs to handle various resolutions. InternVL2
focuses on scaling up the vision encoder within the align-
ment pipeline to improve general visual-language abilities.
Implementation Details. We implement a unified code-
base for LVLM uncertainty estimation and hallucination de-
tection by including adopted benchmarks, LVLMs, base-
lines, and our VL-Uncertainty. Detailed settings for our
VL-Uncertainty are as follows: (1) Initial answer genera-
tion. We set a low temperature of 0.1 for all LVLMs. The
generated answer is compared with benchmark label to ob-



MM.-Vet | Qwen2VL-2B | Qwen2VL-7B | Qwen2VL-72B | LLaVAL5-7B | LLaVA15-13B | InternVL2-1B | InternVL2-8B | InternVL2-26B | LLaVANeXT-7B | LLaVANeXT-13B

GAVIE [28] | 2936 | 4358 | 51.38 | 2339 | | 3073 | 3073 | 2248 | 37.61 | 43.58
Semantic Entropy [9] | 60.55 | 5780 | 62.84 | 7248 | | 72.94 | 55.05 | 58.72 | 61.01 | 72.48
VL-Uncertainty (ours) | 69.72 | 6422 | 71.56 | 8211 | | 74.31 | 65.14 | 64.22 | 72.02 | 74.31

LLaVA-Bench | Qwen2VL-2B | Qwen2VL-7B | Qwen2VL-72B | LLaVALS-7B | LLaVA1.5-13B | InternVL2-1B | InternVL2-8B | InternVL2-26B | LLaVANeXT-7B | LLaVANeXT-13B

GAVIE [28] | 2500 | 2667 | 40.00 | 1500 | | 30.00 | 31.67 | 31.67 | 45.00 | 35.00
Semantic Entropy [9] | 61.67 | 5500 | 61.67 | 7000 | | 65.00 | 60.00 | 5333 | 61.67 | 65.00
VL-Uncertainty (ours) |~ 70.00 | 6833 | 71.67 | 8333 | | 71.67 | 66.67 | 7333 | 68.33 | 68.33

MMMU | Qwen2VL-2B | Qwen2VL-7B | Qwen2VL-72B | LLaVAL5-7B | LLaVA15-13B | InternVL2-1B | InternVL2-8B | InternVL2-26B | LLaVANeXT-7B | LLaVANeXT-13B

GAVIE [28] | 3782 | 4836 | 57.09 | 3158 | | 4061 | 4812 | 3321 | 43.64 | 45.82
Semantic Entropy [9] | 5382 | 5491 | 60.36 | 5261 | | 53.82 | 54.91 | 60.36 | 52.61 | 50.18
VL-Uncertainty (ours) | 5891 | 5976 | 65.58 | 5605 | | 56.36 | 55.15 | 5891 | 59.27 | 54.90

ScienceQA | Qwen2VL-2B | Qwen2VL-7B | Qwen2VL-72B | LLaVALS5-7B | LLaVAL5-13B | InternVL2-1B | InternVL2-8B | InternVL2-26B | LLaVANeXT-7B | LLaVANeXT-13B

GAVIE [28] | 6182 | 7709 | 85.23 | 5850 | | 62.27 | 65.20 | 53.94 | 86.71 | 89.19
Semantic Entropy [9] | 5404 | 7794 | 87.06 | 6177 | | 64.45 | 90.08 | 91.32 | 67.67 | 65.34
VL-Uncertainty (ours) | 6797 | 8012 | 88.99 | 6366 | | 6505 | 9038 | 92.02 | 68.27 | 67.53

Table 1. Comparison with state-of-the-arts on both free-form benchmark (MM-Vet and LLaVABench) and multi-choice bench-
mark (MMMU and ScienceQA) for LVLM hallucination detection. Our VL-Uncertainty yields significant improvements over strong
baselines. This validates the efficacy of our proposed semantic-equivalent perturbation in eliciting and estimating LVLM uncertainty
more accurately, which further facilitates LVLM hallucination detection. The reported results are hallucination detection accuracy. We

re-implement semantic entropy [9] within vision-language context.

tain whether this answer is hallucinatory. (2) Uncertainty
estimation. We use a higher LVLM temperature to enable
sampling process. In total, We perform 5 rounds of sam-
pling. For visual perturbation, we employ 2D Gaussian
blurring with radius in [0.6, 0.8, 1.0, 1.2, 1.4] to create dif-
ferent levels of image blur. For textual perturbation, we use
a small LLM, Qwen2.5-3B-Instruct [1], to rephrase ques-
tions, applying temperatures of [0.1, 0.2, 0.3, 0.4, 0.5]. The
prompt for rephrasing is ‘Given the input question, generate
a semantically equivalent variation by changing the word-
ing, structure, grammar, or narrative. Ensure the perturbed
question maintains the same meaning as the original.”. Af-
ter we obtain sampled answer set, we use small LLM to
check semantic entailment between answers. With answer
set clustered by semantics, entropy of cluster distribution is
calculated as uncertainty. (3) Hallucination detection. We
utilize an uncertainty threshold of 1 for all experiments. If
the estimated uncertainty is higher than the threshold, the
initial answer is predicted by VL-Uncertainty as hallucina-
tion, while those lower are not. The hallucination predic-
tions are compared with initial hallucination detection label
(from (1)) to obtain hallucination detection accuracy. We
utilize 2 H100 (80G) GPUs for all experiments. We also
re-implement semantic-entropy [9] in the vision-language
context since it is initially proposed in text-only domain.

4.1. Comparison with State-of-the-arts

We first present our hallucination detection results
on the free-form question benchmarks (MM-Vet and
LLaVABench) (see Table 1). Our VL-Uncertainty con-
sistently achieves notable improvements over strong base-
lines [9, 23] across various LVLM architectures and model
sizes. Specifically, we observe +10.09% for InternVL2-8B,
+9.17% for Qwen2VL-2B, and +6.42% for Qwen2VL-7B
on MM-Vet. These results validate the effectiveness of our
proposed semantic-equivalent perturbation on both visual

and textual prompts in enhancing LVLM uncertainty esti-
mation and thereby facilitating hallucination detection.

We also present our hallucination detection results on
multi-choice benchmarks (ScienceQA and MMMU) in Ta-
ble 1. The consistent improvements over strong baselines
validate the robustness of VL-Uncertainty across various
benchmarks. On ScienceQA, VL-Uncertainty outperforms
baselines by clear margins within Qwen2VL [48] model
group, achieving gains of +6.15%, +2.18%, and +1,93% for
2B, 7B, and 72B models, respectively. Furthermore, VL-
Uncertainty achieves a high hallucination detection accu-
racy of 92.02% for InternVL2-26B, illustrating its substan-
tial potential for effective hallucination detection.

4.2. Ablation Studies and Further Discussion

Separated visual and textual semantic-equvialent per-
turbation. We present the ablation results of our pro-
posed semantic-equivalent perturbation in Table 2a. Single
modality perturbation already yields substantial improve-
ment compared to the vanilla baseline, with visual per-
turbation improving by +4.58% and textual perturbation
by +1.83%. When semantic-equivalent perturbation is ap-
plied to both visual and textual prompts, VL-Uncertainty
achieves optimal results with a performance of 82.11%, sur-
passing a strong baseline by a clear margin (+9.63%). This
significant improvement validates the efficacy of our pro-
posed perturbation approach in estimating LVLM uncer-
tainty and enhancing LVLM hallucination detection.

Semantic-equivalent and inequivalent visual pertur-
bations. We present a comparison between semantic-
equivalent and semantic-inequivalent visual perturbations
in Table 2b. Specifically, we implement several baselines:
‘Rotation’ rotates the original image with degrees in [-40,
-20, 10, 20, 40]. ‘Flipping’ utilizes 2 horizontal flipped and
3 vertical flipped images. ‘Shifting’ moves the image up,
down, left, and right within reasonable ranges. ‘Cropping’
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(e
Textual Perturb. ‘ Sem. Equiva. ‘ Hallu. Det. Acc.
(a) LLM Temperature ‘ A ‘ Hallu. Det. Acc.
Swapping ‘ X ‘ 74.77
Visual Perturb. | Textual Perturb. | Hallu. Det. Acc. [0.01,0.02,0.03,0.04, 0.05] ‘ 0.01 ‘ 76.61
Deleting | x | 70.64
| | 72.48 [0.05,0.1,0.15,0.2,0.25] | 0.05 | 74.31
Inserting ‘ x ‘ 67.43
v | | 77.06 [0.1,0.2,0.3,0.4,0.5] | 0.1 | 82.11
Replaci 71.56
| v | 731 cplacing_| * | 0.2,04,06,08,10] | 02 | 7844
LLM Repharsi v 82.11
v | v | s epharsing | ‘ (04,08,12,1.6,20] | 04 | 7752
d
(b) @ ()
Visual Perturb. } Equiva. } Acc. } Visual Perturb. } Equiva. } Acc. Blurring Radius ‘ A ‘ Hallu. Det. Acc. LLM Structure ‘ #Param. ‘ Hallu. Det. Acc.
Rotation x 70.18 | GaussianNoise v 73.85
Fips | x| 7156] Dropow | v |7 [0.1,0.2,0.3,0.4,0.5] | 0.1 | 75.69 Qwen2.5-0.5B-Instruct | 05B | 5092
Shifing | x| 7202 | SaltAndPepper | < | 7202 [0.6,0.7,0.8,0.9,1.0] | 0.1 | 7431 Qwen2.5-1.5B-Instruct | 1.5B | 69.27
Cropping | x | 6743| Shapen | v | 7431 [0.6,0.8,1.0, 1.2, 1.4] ‘ 02 ‘ 211 Qwen2.5-3B-Instruct | 3B | 82.11
Erasing | x| 6468 | AdjustContrast | v | 7156 R R )
AdjustBrighmess | v | 7294 | Buming | v | 8211 [0.5,1.0,1.5,2.0,2.5] | 0.5 | 76.15 Qwen2.5-7B-Instruct | 7B | 73.39

Table 2. Ablation studies on MM-Vet with LLaVA1.5-7B. (a) Ablation study of semantic-equivalent perturbation design. Perturbations
applied across both modalities (visual and textual) yield the best results. Notably, the interaction between perturbed visual and textual
prompts enables effective mining of uncertainty in complex vision-language context, thereby facilitating more refined LVLM hallucination
detection. (b) Ablation study of semantic-equivalent and semantic-inequivalent visual perturbation. Semantic-equivalent visual perturba-
tion, such as blurring, proves superior to all other semantic-inequivalent perturbations. This underscores the importance of preserving the
original semantics of visual prompts during perturbation, which more effectively elicits LVLM uncertainty. (¢) Ablation study of semantic-
equivalent and semantic-inequivalent textual perturbation. Among all textual perturbations, LLM rephrasing yields optimal results. Other
rule-based perturbations fail to maintain the original semantics of textual prompts, resulting in unsatisfactory outcomes. (d) Ablation
study of blurring radius in visual perturbation. Utilizing blurring radii of [0.6,0.8,1.0,1.2,1.4] for visual perturbations yields the best
results. Radius with medium gap, such as 0.2, ensures a reasonable variance between perturbed visual prompts, thereby more effectively
eliciting LVLM uncertainty. (e) Ablation of LLM temperature in textual perturbation. LLM temperatures of [0.1, 0.2, 0.3, 0.4, 0.5] during
perturbation yield the best results. This indicates that adjustments within a controlled range facilitate more effective elicitation of LVLM
uncertainty. (f) Ablation study of LLM for textual perturbation. Qwen2.5-3B-Instruct achieves best results among this LLM group.

adopts crop ratios in [0.95, 0.9, 0.85, 0.8, 0.75] regarding ablation study on design details for visual perturbation, fo-

the original size. ‘Erasing’ randomly erases a square area cusing specifically on the blurring radius applied in differ-
with lengths in [50, 100, 150, 200, 250]. ‘GaussianNoise’ ent perturbations (see Table 2d). We observe that main-
adds per-channel noise with scale in [0.05, 0.1, 0.15, 0.2, taining a reasonable variance between perturbed prompts is
0.25]. ‘Dropout’ randomly changes pixels to black with rate crucial for achieving better performance. In visual pertur-
of [0.05, 0.1, 0.15, 0.2, 0.25]. ‘SaltAndPepper’ is similar to bation, a blurring radius gap of 0.2 yields the best results.
‘Dropout’ but changes some pixels to white. ‘Sharpen’ en- Conversely, both excessively small and overly large radius
hances the original image with a degree in [0.1, 0.2, 0.3, 0.4, gaps negatively impact performance. A minimal gap fails
0.5]. ‘AdjustBrightness’ and ‘AdjustContrast’ alter the cor- to provide a sufficient difference between perturbed visual
responding property by a factor of [0.8, 0.9, 1.1, 1.2, 1.3]. prompts, limiting the effective mining of uncertainty in the
Notably, Semantic-equivalent visual perturbation, such as visual modality. On the other hand, a large gap introduces
blurring, yields optimal results by a clear margin. This con- excessive variance, leading to inflated uncertainty that hin-
firms the effectiveness of preserving original visual seman- ders accurate LVLM hallucination detection.

tics during perturbation. Conversely, semantic-inequivalent Design details of textual perturbation. We also present
techniques, with actual semantics of visual prompt altered, the ablation study on LLM temperature settings during tex-
typically result in unsatisfactory outcomes. tual perturbations in Table 2e. The best results from tem-
Semantic-equivalent and inequivalent textual perturba- peratures [0.1,0.2,0.3,0.4, 0.5] for different perturbations,
tions. We further report an ablation study on comparing maintaining a medium temperature gap of 0.1. This pattern
semantic-equivalent and inequivalent textual perturbations is similar to that observed in visual perturbations (see Ta-
(see Table. 2b). For baselines: ‘Swapping’ randomly swaps ble 2d), where a moderate gap yields the best results, both
two words in the question; ‘Deleting’ randomly deletes one very small or large radius gaps compromise performance.
word; ‘Inserting’ inserts one word at a random place; and Choices of LLMs for textual perturbation. Addition-
‘Replacing’ randomly changes one word with another. The ally, we conduct the ablation study on LLMs in textual
observed pattern is similar to that in Table 2b: semantic- perturbation. We found that Qwen2.5-3B-Instruct is the
equivalent perturbations surpass the inequivalent ones by a optimal choice among models tested, as it balances the
clear margin. This confirms retaining the original seman- ability to generate semantically equivalent variations with-
tics of textual prompts contributes to accurate uncertainty out introducing unrelated details. This model capacity is
estimation and effective hallucination detection. well-suited to maintaining semantic integrity in perturbed

Design details of visual perturbation. We also report an prompts, resulting in more accurate uncertainty estimation
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Figure 4. Qualitative comparison between VL-Uncertainty and baselines. We present a sample from free-form benchmark. For this
hallucinatory sample, pseudo-annotation-based method [28] fails to interpret the hidden-behind logic and thus misses detecting hallucina-
tion (see (a)). On the other hand, for semantic-entropy [9], vanilla multi-sampling proves ineffective for mining LVLM uncertainty (see
(b)). In contrast, our proposed semantic-equivalent perturbation on both visual and textual prompts successfully elicits LVLM uncertainty.

This refined uncertainty estimation enhances the successful detection of LVLM hallucination (see (c)).
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(a) Hallucinatory Answer
Figure 5. Uncertainty distribution for hallucinatory and non-
hallucinatory LVLM answers on MM Vet. Our VL-Uncertainty
accurately assigns high uncertainty to hallucinatory answers and
low uncertainty to non-hallucinatory answers. This distinct uncer-
tainty distribution gap facilitates LVLM hallucination detection.

(b) Non-Hallucinatory Answer

and improved hallucination detection. In contrast, smaller-
capacity LLMs struggle to perform semantic-equivalent
perturbation effectively on complex questions, degrading
hallucination detection. Larger-capacity LLMs, on the other
hand, tend to add unnecessary details to perturbed prompts,
which hinders accurate uncertainty estimation.

4.3. Qualitative Analysis

We present a qualitative analysis comparing VL-
Uncertainty with the vanilla baselines [9, 28] in Fig. 4. We
present hallucinatory sample from free-form benchmarks.
For GAVIE [28], external evaluator itself fails to interpret
the underlying logic and thus misses detecting halluci-
nation. In semantic entropy [9], simply increasing the
temperature during uncertainty estimation is insufficient
to effectively capture LVLM uncertainty. The LVLM
consistently produces similar answers for hallucination
cases, leading to inaccurate uncertainty estimation and
suboptimal hallucination detection (see (b)). In contrast,

VL-Uncertainty, through our proposed semantic-equivalent
perturbation, successfully captures high uncertainty and
detects hallucinations in LVLMs (see (¢)).

Fig. 5 shows the statistical distribution of estimated un-
certainty for hallucinatory and non-hallucinatory LVLM an-
swers. Our estimated uncertainty closely calibrates with
the accuracy of LVLM predictions: VL-Uncertainty pre-
dominantly assigns high uncertainty to hallucinatory an-
swers, while assigning relatively low uncertainty to non-
hallucinatory answers. The distinct gap in uncertainty dis-
tribution between hallucinatory and non-hallucinatory an-
swers facilitates effective LVLM hallucination detection.

5. Conclusion

In this paper, we introduce VL-Uncertainty, the first
uncertainty-based framework for detecting LVLM hal-
lucinations. Distinct from existing approaches based on
external knowledge, VL-Uncertainty harnesses LVLM
uncertainty as an intrinsic metric to identify hallucination.
Recognizing the complexities inherent in multi-modal
contexts, we propose semantic-equivalent perturbations
for both visual and textual prompts. For visual prompts,
we apply blurring at different levels, inspired by human
visual processing. For textual prompts, a pre-trained LLM
rephrases questions without altering their semantic mean-
ing. Pairs of perturbed prompts with varying perturbations
are utilized to effectively elicit LVLM uncertainty. Variance
of corresponding answer semantics is harnessed to quantify
LVLM uncertainty. Notably, our uncertainty serves as a
continuous indicator proficient in illustrating varying levels
of LVLM hallucinations. Through experiments with 10
LVLMs across 4 benchmarks (free-form and multi-choice),
our VL-Uncertainty consistently demonstrates clear and
substantial improvements over strong baselines, vali-
dating its effectiveness in LVLM hallucination detection.
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